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SUMMARY

Exact and approximate methods based upon linearized supersonic flow
theory have been developed for the calculation of the velocity potential
and the downwash from thin wings of arbitrary plan form. Particular
attention is given to the evaluation of the downwash in the plane of the
wing. The applicability of the method inherently depends upon a knowledge
of the load distribution over the plan form of the wing. General expres-
slons for the velocity potential and downwash have been derived. Simple
modifications of these expressions produced formulas for the velocity
potential and downwash from arbitrary curved 1ifting lines.

A complete development of all formulas; starting with the basic
solution of the linearized potential equation for supersonic flow, is
given. Although the paper contains many new results, some of the results
presented have been obtained by other methods and are given here solely
for completeness. The general formulation of the downwash equations can
easily be used in finding exact and aepproximate expressions for the other
veloclity components.

The results of the theoretical development are used to determine the
downwash from a pitching rectangular wing and to determine the expression
for the local angle of attack necessary to give a specified load distri-
bution. Comparisons of the exact and approximate values of the downwash
for several lifting-line configurations are also presented.

INTRODUCTION

The calculation of the downwash fields induced by thin wings at
supersonic speeds is necessary in order to evaluate accurately the aero-
dynamic load distribution over the tail, an important consideration for
structural and stability calculations. Available methods, including the
present, are based on the linearized-time-independent flow considerations.
These methods, in general, utilize the following well-known concepts:
conical flows, potential doublets, vortices, and pressure doublets. The
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conical-flow method is used in reference 1 to calculate the downwash
flow fields in the plane of the wing for several plan forms including
the rectangular wing. The potential-doublet method is presented in ref-
erence 2 and is used to find the downwash behind a triangular wing over
a range of Mach numbers in reference 3. The vortex method is developed
for supersonic-flow applications in references 4 and 5 and is used in
reference 6 to find the downwash due to thin wings approximated by lifting
lines. The method used in reference 7 was the potential-doublet method;
however, by integration by parts Ward obtained an expression for the
velocity potential in space which agrees with the expression for the
velocity potential in space determined herein.

The present method is essentially a development of the pressure-
doublet method for the calculation of downwash flow fields. This method
leads easily to expressions for the veloclty potential and the downwash
from arbitrary curved 1lifting lines. These expressions in turn. lead to
approximate expressions for the downwash from 1lifting lines. These
approximate expressions have many computational advantages.

The method described herein has certain advantages 1n that most of
the important results obtained by other methods can be obtained without
difficulty by using the present approach. Integrations are performed
only on the plan form; whereas other methods, excluding the conical-flow
method, generally lead to integrations on the plan form and over the
wake. An attempt was made to present a fairly complete development of
the pressure-doublet method and at the same time present results which
have not been obtalned by other methods.

The accuracy of the developed approximete formulas is brought- out
in the evaluation of a rectengular pitching wing by use of exact (1lin-
earized) and epproximste expressions. Comparisons are made between
exact .calculations of the downwash from certain lifting lines and
approximate expressions. Other applications include some simple deriv-
ations of known results plus an expression for the local angle of attack
necessary to give a specified load distribution.

SYMBOLS
c ‘ chord
b/2 semispan
Ly,Lo X1 limits of integration
P ) pressure coefficient (fressure épVe)

£ . denotes finite part of integral
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R' = \&2 - 62(Y2 + 2,2)

R = \/X2 - 62(Y2 + z2)

equation of an arbitrary line
variable index

a constant

¥y1 limits of integration
free-stream Mach number
rslope of linpe

limits of summation

angular velocity about y-axis

R(2) =\/(x - xl)2 - g2 (Y2
v

X=x-x, Y=y -y¥1,
X3¥s2,X1,¥1,%2]

Bxl,Byi

+ 29

free-gstream velocity

Z=2-21, Xy =%x-%, Yi=Y-y3
Cartesian coordinates

increments in x; and y;, respectively

angle of attack

circulation

a small positive number -
van auxiliary variable
free-stream dénsity

local angle of attack R
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T area of plan form in forward Mach cone from
point (x,y,z)

T! area of plan form and wake in forward Mach cone
from point (x,y,z)

¢ perturbation velocity potential

8¢ ' increment in velocity potential at point

(x,y,z) due to an elementary lifting area
at point (xi,yl,o)

A¢xl difference in partial derivative of ¢ with
respect to x3 (¢xlu - ¢X1ﬂ

A¢TE value of potential difference at trailing edge
(¢TEu - ¢TEZ)

(¢Z)I’(¢Z)II’(¢Z)III vertical perturbation velocity at point (x,y,z)
due to regions I, II, and ITI, respectively

:%? line integral around area of plan form in

MC forward Mach cone from point (x,¥,0)

Subscripts:

u,l upper and lower surfaces, respectively

X,¥,2 partial derivetives with respect to x, Y,
and 2z, respectively

TE trailing edge

THEORY

The theoretical development is divided into three parts: First,
general formulas are derived for the potential and the upwesh 1n space
due to a thin 1lifting surface; the pressure distribution on the surface
is assumed to be known. Second, because the formulas in the first part
are in many cases difficult to evaluate, the expressions for the thin
wing are used to develop formulds for the potential or upwash in space
due to lifting lines. Third, because in some cases the expressions for
lifting lines are difficult to evaluate, approximate expressions are also
derived for the upwash from lifting lines.
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Lifting Surfaces

Potential in space.- The partial-differential equation satisfied by
the perturbation velocity potential in supersonic flow is

0 P (1)
SIS

A general solution of equation (1) is given in reference 8. (The boundary
conditions for airfoils are given in reference 9.) For the purposes of the
present paper this solution may be written in the. form

£ y
¢(X:Y:Z) = iﬂ'}" (¢u -¢7‘)£3_(I%'-)dxl dyq (2)

vwhere @, and @; are the values of @ on the upper and lower sides of
the surface 2z = zj, The finite part of the integral in equation (2)

must be taken as Indicated by the symbol f. The double integrals that
arise will be dealt with aceording to the methods for finding the finite
part of the multiple integrals given by Hadamard in reference 8. The
area of integration T' is the area of the z = zj plane for which

xS x - p\¥2 + 22

Equation (2) remains valid when the velocity potential is replaced
by its partial derivative with respect to the free-stream direction.
Since the pressure is directly proportional to ¢x: replacing ¢ by ¢x
in equation (2) has the effect of introducing a potential which is
directly proportional to the acceleration potential.

Since

¢(X;YJZ) =fx ¢x(l1y‘vz)dx (3)

it follows from equation (2) that

¢(x:3’:z)- = %‘t f“/iz\[‘/; (¢xlu - ¢xll) é‘%‘_[w’_%ﬁ:ldxl dyy d» (%)
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where

R'(2) =\JQX - x1)2 - 32<Y2 + z2)

The difference in ¢xl’ A¢xl, is zero except on the plan form; therefore,
the region of integration T is over the plan form only.

It is proved in reference U that the order of integration of the
finite part of a multiple integral can be changed. Equation (4) for
z3 = 0 can therefore be expressed in the form

¢(X:Y:Z) =X 17 (¢x1u - ¢x17,) . 223 dr dxy dyp (5)

The integral

2,
8% g,
-~ R3Q
must be integrated from the aftercone emanating from point (x,¥1,0)

to the point (x,y,z) because a disturbance at point (x1,¥1,0) only
affects points in the aftercone from the point (x7,¥1,0). The value of

A ;zX
the preceding integral is —0n— .,
(Y2 + z2)R
Equation (5) now becomes
¢(X)Y:Z) = — dxl dyq (6)
T (Y2 + z2

In general, equation (6) is a finite integral; therefore, the finite-

parts symbol has been dropped. The expression for the velocity potential
given by equation (6) was obtained in reference T by a different approach

as indicated in the introduction. Equation (6) may also be readily obtained
from Volterra's solution (referepce 10).
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Upwash in space.- Perhaps the most frequently desired quantity is
the upwash @z. It is shown in the appendix that equation (6) may be
differentiated with respect to 2z under the integral signs without con-
sideration of the variable limits. The result of differentiating both
sides of equation (6) with respect to z is

@, = S E ¢xl[( ) e ( . ):I dxy dyy (7)
T

2%
(12 + 22)23
An expression for the sidewash due to a discontinuous pressure sheet can

be obtained in a manner similar to that used in finding equation (7).

Upwash in the wake.- In the 2z = 0 plane for points not on the plan
form or in the wake, equation (7) reduces to the form

Ay, X
bo- &[] T2 an (®)

The restrictions on equation (8) can easily be understood by comparing
it with equation (6). Equation (6) is an expression for the potential
in space due to a discontinuous pressure sheet. For points not on the
plan form or in the wake, it can be seen from equations (6) and (8) that

¢z(x,y.,0) = %i%l %‘ ¢(x,y,z)

The preceding expression shows that in order for the right side of the
expression to be finite the potential must approach zero as 2z approaches
zero, It is well-known that the potential is zero in the 2z = 0O plane
for zero-thickness wings except on the plan form or in the wake where the
potential has a finite discontinuity across this plane. Because ¢, 1is
in general finite and since the potential has a finlte discontinuity
across the 2z = O plane in the wake and on the plan form, equation (8)
cannot hold on the plan form or in the wake.

Equation (7) may be used to find ¢z for points on the plan form
or in the wake by performing the integrations for an arbitrary 2z and
then setting 2z equal to zero. Generally the integrations for an arbi-
trary 2z are very difficult. Both integrations of equation (7) must be
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rerformed for points on the plan form; whereas, only the integration with
respect to y; 1is needed for points in the wake. The reason that one or
both integrations must be performed before taking the limit of @, as =z
approaches zero is that the integrand tends to infinity along the line

Y1 =Y as z approaches zero. The line y; =y must therefore be
removed from the area of integration. This line may be removed by
removing a narrow strip, of width . €, on each side of the line y; =y
from the area of integration. (See fig. 1(a).) The integrations must be
verformed until the width ¢ 1is removed from the limits of integration.
The 1limit of ¢z as 2z approaches zero mey then be taken. The limit

of $; as z approaches zero cannot be teken until the limit of @,

as € approaches zero is taken unless the effect of the strip is con-
sidered. Figure 1(b) shows the area of integration necessary to evaluate
a point in the wake. It can be seen from this figure that the Xy limits
are independent of ¢€; therefore, for points in the wake the x; inte-
gration need not be performed before the limits are taken.

The calculation of ¢z for points on the plan form or in the wake

can be considerebly simplified by using a combination of equation (7) and
equation (8). For points in the weke, divide the area of integration as
shown in figure 2. Xach region of the integration may be considered as
an independent wing with a local angle of attack necessary to give the
load distribution of the region. Since regions I and III can be con-
sidered as being two different plan forms, equation (8) can be applied
to regions I and III, but equation (7) must be applied to region II.
The value of € 1is chosen small; therefore, in region IT the variation
of A¢x with y1 can be neglected in the first approximation provided
the pressure is continuous over the plan form. Pressure discontinuities
may be dealt with by subdividing the regions of integration.

The contribution of regions I and III to the vertical perturbation
velocity when z =0 1is

My X
1 X1
(¢Z)I+III - 2‘_ﬂ‘/‘7;+III Y2R d'xl dy]_ (9)

For a point above the wake the effect of region II is approximately

y+e A¢xl(X1,Y;0)X l:(Yg - ZE)RE + BEZE(YQ * 22):‘

1 ple
Ga)r 2_"]1.1 f—e (¥2 + 22283 Rt

(10)
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where APy (x1,¥,0) is the difference in @y across the lifting surface
along the line ¥y =y. The x; limits are denoted by Ly and Lo.
After integration with respect to ¥y edquation (10) becomes

), B2 oy (1,7, OV (B2 - p228) |yve
Z ﬂ . l
= L1 (x2 - [3222) (Y2 + ze)R y-¢
and for z =0 o
~ 1 L2 Mx (x1,5,0) \K2 - g2
W) % -4 [ ax (12)
I X

For points in the wake the resultant vertical perturbation velocity
is then given by the sum of equations (9) and (11):

Mxy X

¢z(xyy,o) e
I+III Y°R

2n

dx; dyy -

1 Lo Mxl(leY)o) 2 . 3262

. e In X d-Xl (22)

Equation (12) is approximate when € 1is not zero; however, the accuracy
of the approximation increases as € approasches zero and of course in

the limit the equation is exact. The exact vertical perturbation velocity
is then given by

A¢x1 X |
8,(x,y,0) = ﬁ dy; dx; -
2 e" >0 27 JJ1TIT Y4R

1 fL2 A¢xl(x1,y,0) \‘X2 - 3252 ax
fUL, X '

(13)
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Equation (13) can be expressed in the form

Mxry; B L[ M\[RR - AR
551 ] ax, (14)

¢<xyo>=-1[[———dxldvl-—
Z I ﬁ T XI 2ﬂ }CY

where the second integral is a line integral around the region of the
plan form affecting the point (x,y,0). Equation (14) was obtained from
equation (13) byointegrating the first term by parts with respect to Yyj.

A consideration of the previous division of the plan form into
regions with regard to vortex distributions is helpful in understanding
the physical meaning of the preceding manipulations.

Equation (10) is the expression for the upwash from a series of
horseshoe vortices distributed over region II. The VAl component of the

vortex strength is proportional to A¢x(x1,y,0). The x; component of

the vortex strength is zero except along y ~-¢ and ¥y +¢. (See fig. 3.)
The spanwise distribution of the trailing vortices consists of only
two vortices of finite strength AP(x,y,0) located along

Y1 =Y - €

and along

Y1 =Y t ¢

Equation (9) can be considered as the expression for the vertical
perturbation velocity due to a system of vortices. The integral over
region I represents the effect of the bound and tralling vortices
asgoclated with region I plus a finite vortex (see fig. 3) along

Y1 =75 - €

This finite vortex is -the sum of the y-components of the vortex strength
along

Y1 =7 - ¢
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Since the divergence of a vortex fileld is zero, it is not surprising
that a vortex of finite strength exists salong this line. The integral
over region III represents the effects of the bound and trailing vortices
assoclated with region IIT plus a vortex of finite strength along

Y1 =Y + €

Equation (9) gives the effect on the field point of the vortex distri-
bution on regions I and III, the tralling vortices associated with the
vortices on regions I and ITI, and two vortices of finite strength
located a distance € on elither side of the line y; =y. For any small
value of € the strengths of the two finite vortices are almost equal
and, since the field point lies midway between these finite vortices, it
follows that equation (9) should tend to infinity as € approaches zero.
The infinity arising from equation (9) as €0 1s exactly canceled by
the infinity arising from equation (11) as e¢-» 0. A finite downwash
then results at the point (x,y,O) within the wake region provided that
the spanwise derivative of the load distribution is continuous at y.

Upwash on the plan form.- In order to simplify the calculation of ¢z
on the plan form, consider an arbitrary point slightly above the plan
form and divide the area of integration into regions as shown in figure L.
Region IV 1s small; therefore, the value of A¢x1 is approximately
constant in region IV. For points slightly above the plan form the
contribution of region IV to the vertical perturbation velocity is
approximately

(B2)y ™ A¢x(x,y,0) ff 2 - 2)R2 4 p22(12 4 22)]

axy dayy (15)
(¥2 + z2)2R3 L

The result of performing the integrations in equation (15) is

(o) & -2 Mx(x,,0) (26)

Actually the point at the apex of the hyperbola is a singular point and
must be removed from the region of integration by a method such as is given
in reference 8, pages 147 to 150. The integrals over regions I, IT, and IIT
for points slightly above the plan form are given approximately by equa-
tion (14}. The vertical perturbation velocity @, is then approximately

given by (equation (14) plus equation (16)):
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Mxiy, R o, R :
_ 1 11 1 X) 8
z=- 5 | — dx; dyy - 53 ——ax -5 AP (x,5,0)  (17)

Equation (17) is independent of €; therefore, it is exact for points on
the plan form. The result given by equation (17) was also obtained
independently by Dr. A. Busemann of the Langley Laboratory in an unpub-
lished analysis using a different approach.

Lifting Lines

Integrations that arise in evaluating the potential or the downwash
from thin wings are in most cases very difficult to perform. TFor most
downwash problems reference 6 indicates that a 1ifting line can be used
as a very good approximation. In this reference, formulas are developed
for the upwash in space due to 1ifting lines. In the present paper,
formulas are developed for the velocity potential and the upwash in space
due to 1lifting lines by using the same approach that was used to develop
- the previous formulas for the thin wings. The results for the upwash
agree with the corresponding results of reference 6.

Potential due to a 1lifting line.- The potential or upwash due to an
arbitrary curved 1lifting line can be found from the preceding results.
The following expression for the infinitesimal increment in the potential
due to an elementary lifting area can be obtained from equation (6):

83(x,¥,2) _ Mxy 2X (18)
5x1 ®Y1  ox(y2 + 22)R

The potentisl from an element of a 1ifting line is then

APy, %) zX Byp

on(Y2 + 2z2)R

(19)

where the product A¢xl 8x7 1is held constant as B8x; approaches zero.
The product A¢xl dx; 1s the difference in potential because A¢xl is

constant in the x-direction. Since A§ is also the circulation, equa-
tion (19) can be written ,
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I'zx

d¢(x,y,Z) R i ——
on(Y2 + 2z2)R

dy, (20)

where I' denotes the circulation at point (x1,y1).

Let the equation of the curve denoting an arbitrary lifting line be

x1 = £(y1) (21)

Substituting this function into equation (20) and integrating yields the
equation

fhe z(x - £)T(¥1)

( ] :Z) = i
plxy by (Y2 + 22)\[(x - £)2 - p2(¥2 + z2)

5= dy;  (22)

Upwash due to a lifting line.- The derivative of equation (22) with
respect to z is

bolxg,m)- 2 [ {ix- 212 207v2 - 22 [(x - £)2- 62(x24 232]} (x- o)
1 (¥2+ 22)2[(x - £)2- p2(x2 + Ze)]

dy,

(23)

An expression for the sidewash due to a lifting line can be obtained in
a similar manner. For points in the 2z = O plane not directly behind
the 1lifting line, equation (23) reduces to

= dyy (24)

¢ (x,y,O) =
g b Y2\[lx - £)2 - py2

1 fhe (x - £)7ly1)

on

For points directly behind the 1ifting line, however, the equation of the
1ifting line must be known in order to evaluate equation (23) in the
z = O plane.
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Unbent lifting lines.- For a lifting line parallel to the y-axis
located at x = g, equation (23) becames

by(x,y,2) = & fhe {[x a)2- BEYE:,YQ- 72 [(x a)2- BE(Y2+2z2)]} (x-a) dyl
an Jpy (Y2+z [x a)2 B2(x2 + 22)] 3/2

(25)

When- integrated by parts, equation (25) becomes

XY(R® - B2z2)r(yq)
¢z(x:Y:z) = -
2n(X2 - 8222)(Y2 + z2)R n

XY(R? - BQZE)M

ho
1 LYY (26)

2Th (X2 - p222)(Y2 + z2)R

When one or both limits of the first term of equation (26) are the inter-
section of the Mach cone from point (x,y,z) with the lifting line, these
limits are neglected because only the finite part is to be taken. For
lifting lines that represent airfoils, I' 18 zero at each end of the line;
therefore, in this case equation (26) becomes

ar(yy)
2 2_2 1
lfh2 XY (R -Bz).ﬁl__

¢Z(X,Y,Z) = =
by (%2 _ p2z2)(¥2 + z2)R

L ar, (27)

This result was obtained in reference 6 by using vortex theory.

al(yq) "
dyy

When is zero, equation (26) becomes
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XT {X2 - B2 |( [y - Bp)2 + 22 ]}(y - hp)

2n(x2 - 8529 \ [y - )2 + 27 F B2[(y - mp)2 + z2]

{_ - p2 [(y -"hy)2 + ezeb);- hy)
[(Y - 1m)2 + ze_] \ﬁ - g2 [(y h)? + 22]

Equation (28) is the upwash from a horseshoe vortexj this result was first
obtained in reference 11,

¢z(x:Y:Z) =

(28)

The velocity potential in space due to an unbent 1lifting line can be
ar

expressed in terms of I' and —. Integrating equation (22) by parts
dyy
gives
My1) . -1zm|P2 1 phe 1 zR aT
#(x,y,z) = tan T = - = f tan™" = — dy; (29)
Syt YX hy ex n X dyq
ar
For a horseshoe vortex ~——— 1is zero and
dyy
() = r(hp)

therefore, the potential in space due to a horseshoe vortex is

2 2.2
#(x,y,z) = L an—t Z\/(; - a)2 - po(y - h2)2 - B2z )

e (y - o)X

- an/(x - 8)2 - p2(y - 1y)2 - 222 (30)
(y - i1)X

The components of the velocity can be found from equation (30) by
differentiation.
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Lifting line of constant slope.- The potential due to a liftihg line
of constant slope can be expressed as (from equation (22))

ho Z(X _ ylm- k)l"(yl)
¢ =L — 4y (31)
2x

hy _k2
(12 + 22) (-yl. ) - B2(x2 + 22)
- |

where the equétion of the lifting line is

When integrated by parts, equation (31) becomes

an ( yl") 72
Yix - - - h
m m ]




NACA TN 2135 g

The potential due to a bent lifting line as shown in figure 5(a) is

§ o) ) oy
21 ) ,%_ -
( ) 5)(% ) "ET‘) -3

o
1
'.-l
N
4_
Mo
]
1
W,
B +
=
~——
]
™
PN
o]
no
+
N
Do

b/2 C Qe
/ . z\/(x N ) - B2(Y2 + 22)
gl- S:L tan~1 m
Y1 X
) O . Y(x _ 1 )

| dy, (33)
22
m

a
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where m 1is the slope of the bent lifting line when y 1is positive

(see fig. 5). When the lifting line is used to approximate a wing,
I{-b/2) and I(b/2) are zero. The components of the velocity for a bent

1ifting line can be found by differentiation of equation (33).

When dI(y;)/dy1 is zero equation (33) becomes

D2

tan = +
-+ k

fedle-5)

sV gf e
y(mx + k) - z2

Y »
. (34)

y(mx - k) + 22
m

—

Equation (34) is the expression for the potential in space due to a
vortex of constant strength as shown in figure 5(b). Since the velocity
components can be found by differentiation, the upwash is given by




dr = =

2n

[(:r ~ hp) (mx - y) + 28] Bmx - hp)2 - B2m2(y - hp)?] - 2B2w222(y - hp)(mx - y)

[(y—he)2+z2:|[-_mc-y2+zel—Beme)]\f—— -Bel:(}'-he +22]

I:(y - hy)(mx + y) + ze:l [mx + 1)2 - pEm2(y - ) Ej + 2Bfm?z2(y - hy)(mx + y)

—mEy-hl +z€|[mx+y2+z l-ﬂEmEJ\/x—+-— - g2 y-h1)2+z{|

m{[—-y(mx +5) 4 22] - B2y2) + 28222y (mx + Y)}

(¥2 + ZE)E(mx +¥)2 + 22(1 - BEmEﬂ \/xE - B2(y2 + 22)

m{[y(mx -¥) + ZE:I (x2 - p2y2) - 2p%22y(mx - Y)}(

(32 + 22) [(mx - ¥)2 + 22(1 - Be'me)]\/x2 - B2(y2 + 22)

where the origin of the axes has been transformed to the point (%,0,0) of the original
system of axes.’ Equation (35) can be obtelned from the results of reference 6.

GETE NI VOVH

6T



20 ‘  NACA TN 2135

Approximations to the Upwash from Lifting Lines

Although the integrals that arise when lifting lines are used are
much easier to evaluate than the integrals of exact lifting-surface
expressions, many of the integrals that arise in conmnection with the
use of lifting lines cannot be evaluated in closed form and many
involve singularities. It is therefore desirable to obtain approximate
expressions for lifting lines.

Approximation of an unbent lifting line.- Equation (28) can be used
to approximate an unbent lifting line by a series of horseshoe vortices.
The upwash from a series of horseshoe vortices that approximate the
circulation by a series of sters as shown in figure 6(a) is

n

oo\ o - e - 22?)[r() - rivso)] (36)

an - (X2 - B222) (Y42 + z2) \/X2 - p2y42 - p2z2

where Y4i denotes y - y3; and i takes on all integral values from O
to n. The upwash from a series of horseshoe vortices that approximates
the circulation by a series of steps as shown in figure 6(b) is

n

XY; (%2 - 2732 - 28222) [[(y141) - Tlv1)]
oL (37)

on L (X2 - B222) (Y42 + z2) VXQ - B2Y42 - 22

The average of equations, (36) and (37) is

n

XY; (X2 - p2Y42 _ 2p2z2 - _
4, = Th'l',t 1( i B )l:I'(yi+1) r(y1 1)] (38)

i=0

(X2 - 222) (142 + 22) X2 - B2(Y32 + 72)

Equation (38) is the upwash from a series of horseshoe vortices which
approximates the circulation by a serles of steps as shown jin figure 6(c).
In general, for points directly behind the 1lifting line, equation (38)
should give best agreement with the exact lifting line when y (the
coordinate for the field point) is midway between consecutive values of
Yi- An expression for the sidewash may easily be obtained by using the
sidewash due to a horseshoe vortex in the same manner that the upwash due
to a horseshoe Vortex was used in obtaining equation (38).



Approximetion of bent llfting lines.- A bent 1irting line cen be approximated by a series
of vortices of the form shown 1n figure 7 plus terms giving the effect of the bend in the center
of the lifting line. Figure 8 shows a series of vortices of the form shown in figure 7 distrib-
uted along a bent 1lifting llne. The upwesh from such a system of vortices is

¢z"'h__ﬂ

Tom) [l - y0)? + o] [(me + )8+ 2B - o) \/(" * %)2 - 82(y - 74)® - %2

1 i {E? - ys)(me - y) + 28] [mx - 34)2 - pPR(y - v1)8] - 2p202e2(y - yy) (mx - 3’)} l:r'(yi+1) - Myi-1)]
b Y1\ )
120 aftr - v1)2 + 28] [(mx - 3)2 + 2201 - p2u?)] \/(x - F) - B2(y - y1)® - p2B

P(O)mﬂ}y(m +y) + 2] (2 - B2R) + 26222y (mx + n} 3
ox(y2 + ze)Bmx +¥)2 + 22(1 - Bemeﬂ \/xe - B2(y2 + 22)

P(O)m{l:y(;:x - ¥) + 2)(x2 - p2y2) - 2pely(mx - )} (39)
on(y2 + z2) |:(mx - ¥)2 & 22(1 - Bemaﬂ \(QLE - B2(y2 + z2)

o .
1 ‘ {E.Y - ¥1)(-mx - ¥) + ze] [(mx +¥41)2 - pen(y - Yi)aj - 2p2n22%(y - yy)(-mx - Y)}EI'(5'1+1) - I‘(in_l)]
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where nj 1is related to negative values of y and np 1is related to
positive values of y. The first term on the right side represents the
vortices for negative values of y; the second represents the vortices
for positive values of y. The remaining terms take into account the
effect of the bend in the center of the lifting line. Equation (39) is
set up for a distribution of vortices as shown in figure 8.

Equation (38) can be used to approximate a bent lifting line if X
is replaced by Xj where Xj denotes x - xj. When this is done, the
result is

n
g - .1 X1¥3 (%42 - B2¥42 - 26222) [M(yy47) - Dlyy.g)] (o)
2 = i
i (X12 - B222) (Y12 + z2) \/X12~ - B2(Y12 + 2°)

i=0

Equation (40) approximates a bent 1lifting line by adding the effects of a
series of horseshoe vortices as shown in figure 9(a) when the circulation
is symmetrical about the center of the 1lifting line, and when the points
(xi,yi) are chosen symmetrically about the center of the lifting line.
When the circulation is not symmetrical and/or the points (xi,yi) are

not chosen symmetrically asbout the center of the lifting line, equation (40)
approximates a bent lifting line by a series of vortices as shown in

figure 9(b). The downwash from an infinite line vortex of constant
strength and infinite. slope is zero; therefore, equation (40) should give

a reasonable approximation to a bent 1lifting line.

R€sumé€ and Discussion of Theoretical Development

In the theoretical development exact and approximate formulas have
been developed for the potential and the upwash due to thin wings. An
expression for the potential in space due to a thin wing was derived from
an expression for the partial derivative of the potential with respect to
the free-stream direction. The upwash was found by differentiation of this
expression. Formulas are derived for the upwash in the wake and on the
plan form. The results of the exact expression for thin wings were used
to find the potential and the upwash due to lifting lines, and the exact
expressions for 1lifting lines were used to find approximate expressions
for lifting lines.

In actugsl calculations btetter approximations to 1ifting surfaces
mey be obtained by using several lifting lines or their approximations
distributed along the chord. Another approach would be to distribute
finite vortices over the plan form., Either of the preceding methods
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may be used to find a good approximation to the downwash from a 1ifting
surface, provided that the apex of the hyperbola formed by the inter-
section of the Mach cone with the plane of the wing does not lie on the
plan form. For cases where the apex is om the plan form there is a
finite contribution along the Mach cone. This contribution may be
evaluated by the same method that was used to evaluate the double inte-
gral in equation (15).

It should be remembered that this paper does not discuss the
effects of thickness; however, these effects may be evaluated rather
simply by use of source distributions.

APPLICATIONS

The results of the theoretical development can be applied to a number
of problems. A few of these problems will be considered here.

Potential and Upwash at Infinity

When x approaches infinity equation (6) becomes

v
Bw,7,2) = & — 8 ax; dyy.
TY2 + 22

Since

i

M(X:YJZ) =fx A¢J-[]_ dx
L.E.
integrating the preceding expression with respect to x7 gives

b2 Afm

Y2 4 22

¢(°°)y:z) = Z

o dy, (41)

Equation (41) is the same equation as the equation for the potential at
infinity behind an airfoil in subsonic flow and is a well-known result
noted in references 1 and 2.

s e —
e e e e e e e e ——— g T iy
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The upwash at infinity is given by

¢ _ 1 h2 ( - Z2)A¢TE dy- )
z = 5% (42)
Integrating equation (42) by parts and replacing A¢TE by ' gives
| AT
r 1 1
= —t | -1 L k
TR on(Y2 ¥ z2) 2% Y2 + 22 e (k3)
b Jdm

For wings I'(hy) and I'(hp) are zero, the first term of equation (U43)
becomes zero, and the remaining term gives the upwash at Infinity. The
same result is given in reference 6.

The Upwash for a Flat Unswept Wing of Infinite Span

The Ay on the plan form of an infinite unswept wing is -2_‘;‘-’.
Since
MNPy
—_— =0
dy1

equation (17) reduces to

¢z (x,y,O) = -aV

For points in the wake, equation (1k4) gives

¢Z (x,¥,0) =0

The preceding results are the well-known equations for the upwash in the
= 0 plane for the two-dimensional, flat, unswept wing.

1

Camber and Twist Necessary to Give Specified
Lift Distributions

Equation (17) may be used to find the camber and twist necessary to
glve a specifled 1ift distribution. The local angle of attack is given

by

_ '
o= f?% (4lk)
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and the pressure coefficlent is given by

p .
v

(15)

The local angle of attack for a given 1ift distribution, derived from
equations (17), (44), and (45), is

x
- P _ 1 FR -1 oyl
=% hn\?ic = X uﬂbZY; o &L dn (16)

As an example, the local angle of attack of a rectangular wing with
constant load is now considered.

When the pressure distribution is a constant, equation (46) becomes
BP. P
0 = == = o — dx ).[.
T In 5§ 1 (4T)

For the rectangular wing in the region unaffected by the tip,
equation (47) becomes

o = -85 (48)

In the region affected by the tip, equation (47) becomes

o)

_ B8P _ P \ka - Xl) - 52y1 axy o
ag N ).I.J‘W (X _ Xl) ( 9)

X+By

where the coordinates are now located at the intersection of the leading
edge and the tip. (See fig. 10.) After the integration is performed
equation (49) becomes

(o

P <_TFB + x2 - BEyZ -1 By > ’ (50)

= + tan
= y B Vi@ - g2y

Equation (50) agrees with the results in reference 10.
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Upwash Close to the Trailing Edge

The value of the vertical perturbation velocity immediately behind
the trailing edge can be obtained from equation (17).

In this application the concept of cancellation of pressure is
utilized. It is assumed that the wing extends past the trailing edge.
Since the pressure must be zero through the wake, this pressure behind
the trailing edge must be canceled. The boundary conditions in the wake
are then satisfled by the wing pressure extended past the trailing edge
and the cancellation pressure. The upwash is therefore made up of the
effect of the pressure on the wing, its extension behind the wing, and
the cancellation of the pressure behind the trailing edge.

For trailing edges which are perpendicular to the free-stream direc-
tion the application of equation (17) (using the cancellation-of-pressure
soncept) to the upwash immediately behind the trailing edge leads directly
to the relation

(Bo)gg = ~ong¥ + B0 m (51)

vshere opgp 1s the local angle of attack of the wing at the tralling edge.
[he result given by equation (51) was obtained in references 1 and 2 from
1 physical consideration. When the trailing edge has a slope m, equation
(17) yields

(52)

Iquation (52) is also obtained in reference 1.

Upwash in the Wake behind a Rectangular Wing
Pitching ebout Its Leading Edge

As an example to illustrate downwash calculations the upwash in the
plane of the wing from a rectangular-pitching-wing is now calculated.
(See fig. 10 for axes used in analysis.) For stationary axes a pitching
wing moves in the arc of a circle; therefore, for axes fixed in the wing
a pltching wing in linearized flow can be replaced by a wing which has a
local angle of attack that varies linearly in the free-stream direction.
It is assumed that the wake remains in the 2z = O plane and that the
rolling-up of the trailing vortices can be neglected.
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The wake behind a rectangular wing may be divided into two regioms.
One region 1s not affected by the tip or tips and is therefore a region
which has a two-dimensional flow. The other region is the region affected
by the tip or tips; in this region the flow is three-dimensional.

There is no upwash in the wake behind a two-dimensional unswept,
pitching wing; therefore, only the region affected by the tips of the
wing has upwash. Since the analysis is based on linearized flow, the
two tip effects add directly and therefore only one tip need be treated.

The upwash in the z = 0 plane due to one tip of a rectangular
pitching wing is shown in figures 10 and 11. The velocity potential and
the pressure on a rectangular wing pitching about the leading edge were
obtained by transforming the expregsions given in reference.l2 for the
veloclty potential and the pressure on a rectangular wing pitching sbout
the half-chord line.

The upwash at the trailing edge was found by using equation (51).
The upwash close to the trailing edge was found by use of equation (17).
The evaluations of the integrals were performed numerically. Equation (17)
was derived to find the downwash on the plan form, but it may be used
in the wake by applying the cancellation-of-pressure concept.

"A lifting line was used for calculating the upwash 2 or more chords
behind the trailing edge inasmuch as this method was found to be accurate
to two decimal places in this region.

The upwash at infinity was found by using equation (43). At infinity
the upwash in the z = 0 plane for B =C =1 1is given by the following

expressions: .
For y>0
¢_.l££_i_]£_y_§_ (53a)
7 3n \/ﬂy + 1) 2
for -1<y<o
4, - _g%(y +3) (53b)
for y < -1
4 - 2
¢z . _SLQi_il—- + ¥ + 3 . (53¢c)

3n|\fy(y + 1) _ 2
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Approximation of the Upwash from a ' .
Rectangular Pitching Wing

The calculation of the downwash from the rectangular pitching wing
together with results of reference 6 indicates that, for regions some
distance behind the trailing edge, lifting lines give very good approxi-
mations to the actual flow fields. In many cases it is simpler to use
the approximation given by equation (38) than to use the exact lifting-
line expression.' The accuracy of equation (38) was investigated by cal-
culating the upwash from an unbent 1ifting line and comparing the results
with the results obtained using equation (38). The unbent lifting line
used was one that approximates the flow from the pitching rectangular
wing.

In figure 12 the values of the upwash from the exact and the approxi-
mate 1ifting lines are plotted. Ten equally spaced points across the tip
region were used in the approximation. It can be seen that for this case
in most regicns the approximation yields results which are as reliable as
the exact values. If greater accuracy is required, it should be remem-
bered that the accuracy of the approximation increases as the number of

points is increased.

Approximation to the Upwash from a
.Bent Lifting Line

The approximation to the upwash from a bent 1ifting line given by
equation (39) was used to find the downwash along the line z =0, y =0
behind a triangular wing as shown in figure 13. Figure 13 shows the
values given by equation (39) for 10 points across the semispan, the exact
lifting line, and the exact linearized solution. The values for the exact
lifting line for this case were taken from reference 6 and the values of
the exact linearized solution were taken from reference 3.

Figure 13 shows good agreement between the approximate and exact
bent .lifting 1ines. In general, the accuracy of the approximation will
increase as the number of points used in the approximation is increased;
therefore, it is expected that the difference between the exact and
approximate expressions given in figure 13 could be decreased by increas-
ing the number of points across the semispan.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics )
Langley Air Force Base, Va., April 12, 1950

~
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APPENDIX

DIFFERENTTATION UNDER THE INTEGRAL SIGN

OF THE EXPRESSION FOR §

The fact that equation (6) may be differentiated with respect to =z
under the integral sign without consideration of the varisble limits can
be proved as follows:

If it is assumed that the right side of equation (6) cen be
differentiated by differentiating only the integrand, then

1 [/v A¢x - z2)R2 + p222(¥2 + z2):|XL

dx) dy (A1)
(12 + 22)283 '

If the preceding equation is correct, the potential may be expressed by

f ﬂ“ 2P [(Y2 - 29)r2 4 p2A2(¥2 + 12)]}{

dx; dy; & (A2)
(x2 + 2 2[r(M)]3 |

since

Z
¢ =f ¢Z(X:Y))‘-)d)'

Interchanging the order of integration of equation (A2) yields

4 - I/ _[ [(Y2 x2) [R(x)] + 322(¥2 + 22)] D axy dy

+ 222 RV]3
(43)
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The result of performing the first integration in equation (A3) is

ﬂ Y2 " z2)R dx; dyp (Ak)

Equation (Al4) is the same as equation (6); therefore, it has been shown
that equation (6) may be differentiated with respect to z under the
integrel sign without regard to the variasble limits., Similar proof for
the other velocity components can also be obtained.



NACA TN 2135 31

REFERENCES

1. Lagerstrom, P. A,, Grahem, Martha E., and Grosslight, G.: Downwash
and Sidewassh Induced by Three-Dimensional Lifting Wings in Super-
sonic Flow. Rep. No. SM~13007, Douglas Aircraft Co., Inc.,

April 1k, 19kT.

2. Heaslet, Max. A., and Lomax, Harvard: The Calculation of Downwash _
behind Supersonlic Wings with an Application to Triangular Plan
Forms. NACA TN 1620, 1948.

3. Lomax, Harvard, and Sluder, Loma: Downwash in the Vertical and Hori-
zontal Planes of Symmetry behind e Trlangular Wing in Supersonic
Flow. NACA TN 1803, 1949.

4. Robinson, A.: On source and Vortex Distributions in the Linearized
Theory of Steady Supersonic Flow. Rep. No. 9, College of Aero.
(Cranfield), Oct. 194T.

5. Robinson, A., and Hunter-Tod, J. H.: Bound and Trailing Vortices in
the Linearized Theory of Supersonic Flow, and the Downwash in the
Vake of a Delta Wing. Rep. No. 10, College of Aero. (Cranfield),
Oct. 1947.

6. Mirels, Harold, and Haefell, Rudolph C.: Line-Vortex Theory for
Calculation of Supersonic Downwash. NACA TN 1925, 1949.

7. Ward, G. N.: Calculation of Downwash behind a Supersonic Wing. The
Aeronautical Quarterly, vol. 1, pt. I, May 1949, pp. 35-38.

8. Hadsmard, Jacques: Lectures on Cauchy's Problem in Linear Partial
Differential Equations. Yale Univ. Press (New Haven), 1923.

9. Heaslet, Max. A., and Lomax, Harvard: The Use of Source-Sink and
Doublet Distributions Extended to the Solutlion of Boundary-Value
Problems in Supersonic Flow. NACA Rep. 900, 1948,

10. Heaslet, Max. A., Lomax, Harvard, and Jones, Arthur L.: Volterra's
Solution of the Wave Equation as Applied to Three-pimensional
Supersonic Airfoil Problems. NACA Rep. 889, 19L47.

11. Schlichting, H.: Airfoil Theory at Supersonic Speed. NACA ™ 897,
1939.

12, Harmon, Sidney M.: Stability Derivatives at Supersonic Speeds of
Thin Rectangular Wings with Diagonals ahead of Tip Mach Lines.
NACA Rep. 925, 19k9.







NACA TN 2135 . 33

PN

, Mach cone

Intersection of Mach cone
with plqn form

Arbitrary plan form
¥ in z =0 plane .
a4
Arbitrary point
oA " ).7)

(a) Arbitrary point above plan form. 1-611103.1

Figure 1.~ The intersection of forward Mach cone from point (x ,y,z)’ with
arbiltrary plan form.
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Mach cone

Intersection of Mach cone
with plan form

Arbitrary plan form
in z=0 plane :

Arbitrary point
(X,y,Z)

(b) Arbitrary point above wake. I~-6410l,1

Figure 1.- Concluded.
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Intersection of Mach cone
with plan form

Arbitrary plan form
in z =0 plane

...... Arbitrary point
(x,y,z)

.=y

L-611105.1
Figure 2.- Regions of integration for a point affected by the wake.
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Mach cone

Intersection of Mach cone
with plan form

Arbitrary plan form
in z =0 plane

Trailing vortices

Arbitrary point

s (x,Y,2 §

L-614106,1
Figure 3.~ Vortices assoclated with the regions of integration.
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Figure k.- Top view of reglons of integration used in finding the down-
wash on the plan form.
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X

(a) Bent 1lifting line.

©,0) Sy

v

Vortex _ X Vortex

(b) Vortex of constant strength.

Figure 5.- Lifting line of constant slope.
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Span Joadng

(a) Approximation that leads to equation (36).

Sparn  Joading

N

Span  loading

(b) Approximation that leads to equation (37).

(c) Approximation that leads to equation (38).

Figure 6.- Approximations of the span loading by series of rectangles.
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(00) y

“— Y/:h?.

V

X
Figure T.- Finite vortex of the form used to approximate a bent lifting
line.
©.0) > Y
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Figure 8.- Bent lifting line approximated by & series of finite vortices.
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(a) Symmetrical loading and symmetrically distributed points.

©0) - vy
LifTing line
| 7o mnfinit : -
, 4 4 70 /nfinity
// -
X
\
(b)’Uhsymmetrical loading and/or'unsymmetrically distributed

points.

Tigure 9.~ Bent lifting lines approximated by a series of horseshoe
vortices.
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Figure 10.- Contour plot of the downwash from a pitching rectangular
wing in z = 0 plane. ’

Figure 11.- Dovnwash behind a pitching rectangular wing in z = 0O plane.
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— Exact ftipg line
X Values using approximatson

v/, c—/710rc/5

Figure 12.- Downwash from a lifting line and its approximation by a series
of horseshoe vortices at ten equally spaced points. (Lifting line
approximates a rectangular pitching wing.)

" Agoroximate bent (ifling /ine
8 Exact finearrzed solutian
o reference 3
= ~Lxact bent IFing line I
b reference 279 s ak al T
t _ === ]
<k P I
§ LiFting
S 2 /ine
N ¥ b5
/0 1E yzA /6 /8 20 aze 4 cb
Choradls behind qoex

Figure 13.- Downwash determined by exact and approximate lifting lines

alone the line 2z =0, y = 0 behind a triangular wing with aspect
ratio of 3.2. M = V2. ‘
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